Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Molecules ; 28(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20238192

ABSTRACT

Essential oils (Eos) have demonstrated antiviral activity, but their toxicity can hinder their use as therapeutic agents. Recently, some essential oil components have been used within safe levels of acceptable daily intake limits without causing toxicity. The "ImmunoDefender," a novel antiviral compound made from a well-known mixture of essential oils, is considered highly effective in treating SARS-CoV-2 infections. The components and doses were chosen based on existing information about their structure and toxicity. Blocking the main protease (Mpro) of SARS-CoV-2 with high affinity and capacity is critical for inhibiting the virus's pathogenesis and transmission. In silico studies were conducted to examine the molecular interactions between the main essential oil components in "ImmunoDefender" and SARS-CoV-2 Mpro. The screening results showed that six key components of ImmunoDefender formed stable complexes with Mpro via its active catalytic site with binding energies ranging from -8.75 to -10.30 kcal/mol, respectively for Cinnamtannin B1, Cinnamtannin B2, Pavetannin C1, Syzyginin B, Procyanidin C1, and Tenuifolin. Furthermore, three essential oil bioactive inhibitors, Cinnamtannin B1, Cinnamtannin B2, and Pavetannin C, had significant ability to bind to the allosteric site of the main protease with binding energies of -11.12, -10.74, and -10.79 kcal/mol; these results suggest that these essential oil bioactive compounds may play a role in preventing the attachment of the translated polyprotein to Mpro, inhibiting the virus's pathogenesis and transmission. These components also had drug-like characteristics similar to approved and effective drugs, suggesting that further pre-clinical and clinical studies are needed to confirm the generated in silico outcomes.


Subject(s)
COVID-19 , Oils, Volatile , Humans , SARS-CoV-2 , Antiviral Agents/chemistry , Oils, Volatile/pharmacology , Molecular Docking Simulation , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism , Peptide Hydrolases/metabolism , Molecular Dynamics Simulation
2.
Vaccines (Basel) ; 10(8)2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1957479

ABSTRACT

BACKGROUND: The mass vaccination campaign against SARS-CoV-2 was started in Tunisia on 13 March 2021 by using progressively seven different vaccines approved for emergency use. Herein, we aimed to evaluate the humoral and cellular immunity in subjects aged 40 years and over who received one of the following two-dose regimen vaccines against SARS-CoV-2, namely mRNA-1273 or Spikevax (Moderna), BNT162B2 or Comirnaty (Pfizer-BioNTech), Gam-COVID-Vac or Sputnik V (Gamaleya Research Institute), ChAdOx1-S or Vaxzevria (AstraZeneca), BIBP (Sinopharm), and Coronavac (Sinovac). MATERIAL AND METHODS: For each type of vaccine, a sample of subjects aged 40 and over was randomly selected from the national platform for monitoring COVID-19 vaccination and contacted to participate to this study. All consenting participants were sampled for peripheral blood at 3-7 weeks after the second vaccine dose to perform anti-S and anti-N serology by the Elecsys® (Lenexa, KS, USA) anti-SARS-CoV-2 assays (Roche® Basel, Switzerland). The CD4 and CD8 T cell responses were evaluated by the QuantiFERON® SARS-CoV-2 (Qiagen® Basel, Switzerland) for a randomly selected sub-group. RESULTS: A total of 501 people consented to the study and, of them, 133 were included for the cellular response investigations. Both humoral and cellular immune responses against SARS-CoV-2 antigens differed significantly between all tested groups. RNA vaccines induced the highest levels of humoral and cellular anti-S responses followed by adenovirus vaccines and then by inactivated vaccines. Vaccines from the same platform induced similar levels of specific anti-S immune responses except in the case of the Sputnik V and the AstraZeneca vaccine, which exhibited contrasting effects on humoral and cellular responses. When analyses were performed in subjects with negative anti-N antibodies, results were similar to those obtained within the total cohort, except for the Moderna vaccine, which gave a better cellular immune response than the Pfizer vaccine and RNA vaccines, which induced similar cellular immune responses to those of adenovirus vaccines. CONCLUSION: Collectively, our data confirmed the superiority of the RNA-based COVID-19 vaccines, in particular that of Moderna, for both humoral and cellular immunogenicity. Our results comparing between different vaccine platforms in a similar population are of great importance since they may help decision makers to adopt the best strategy for further national vaccination programs.

SELECTION OF CITATIONS
SEARCH DETAIL